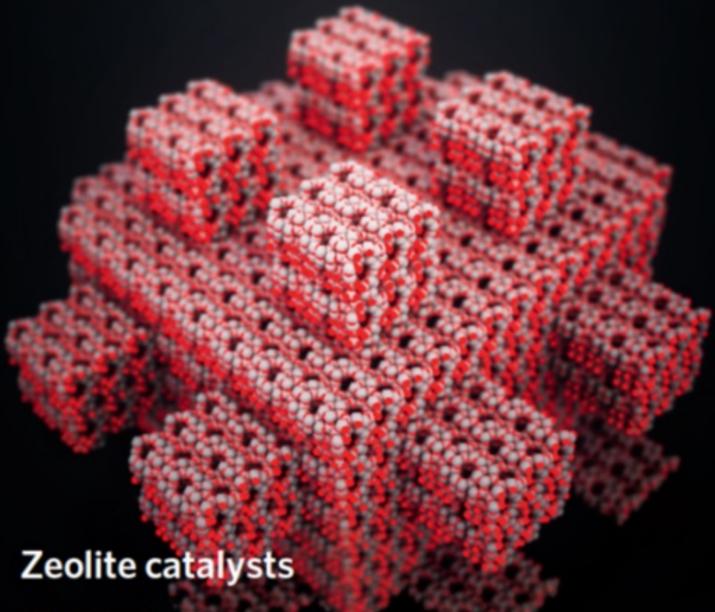
ChE-402: Diffusion and Mass Transfer

Lecture 12

Intended Learning Outcome

- To analyze diffusion of molecules in porous (nanoporous) materials.
- To revisit the concepts learned, and apply them to understand/predict/design analytical methods used for the measurement of diffusion coefficient.
- If time permits, we will at analyze diffusion of ions under applied electric field.

nature materials

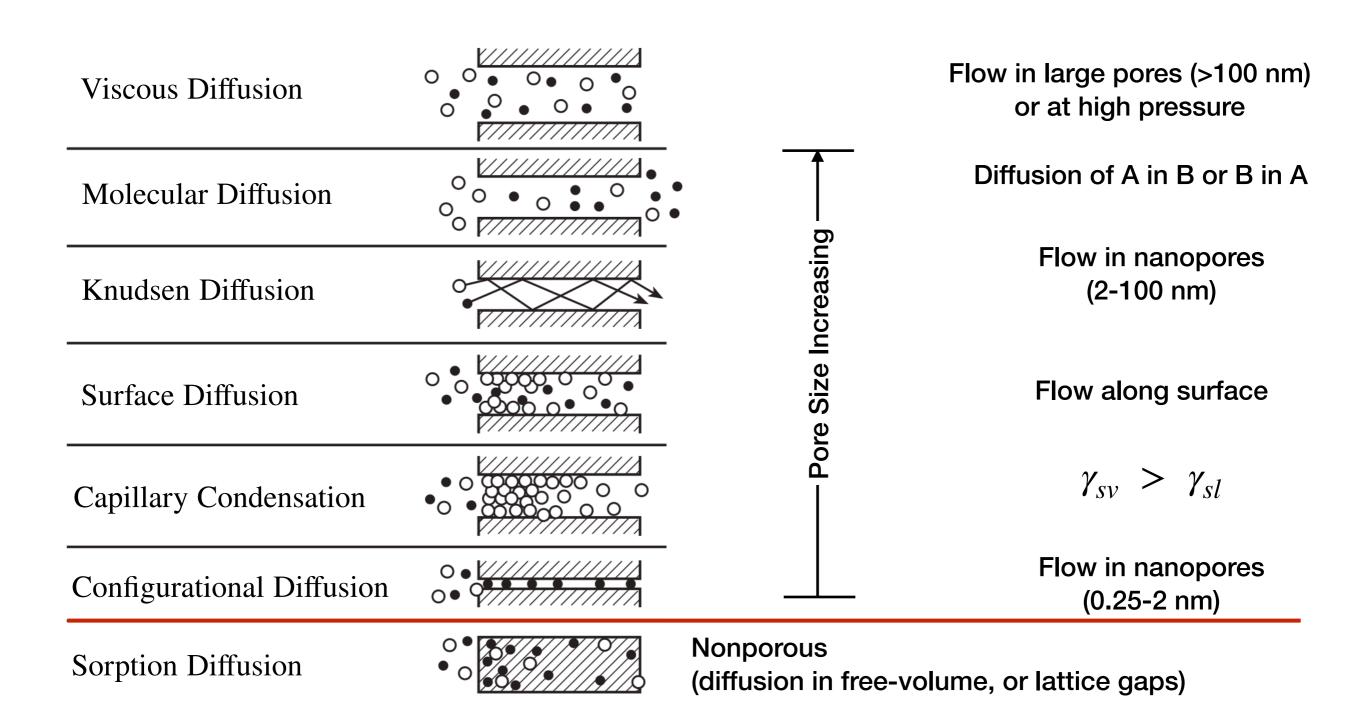


BIOSENSORS
Detecting intracellular mechanics

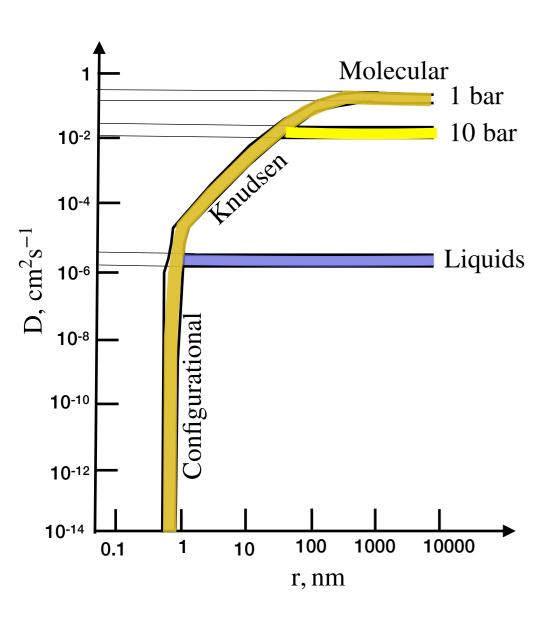
LAYERED OXIDES SYNTHESIS
Thermodynamics and kinetics interplay

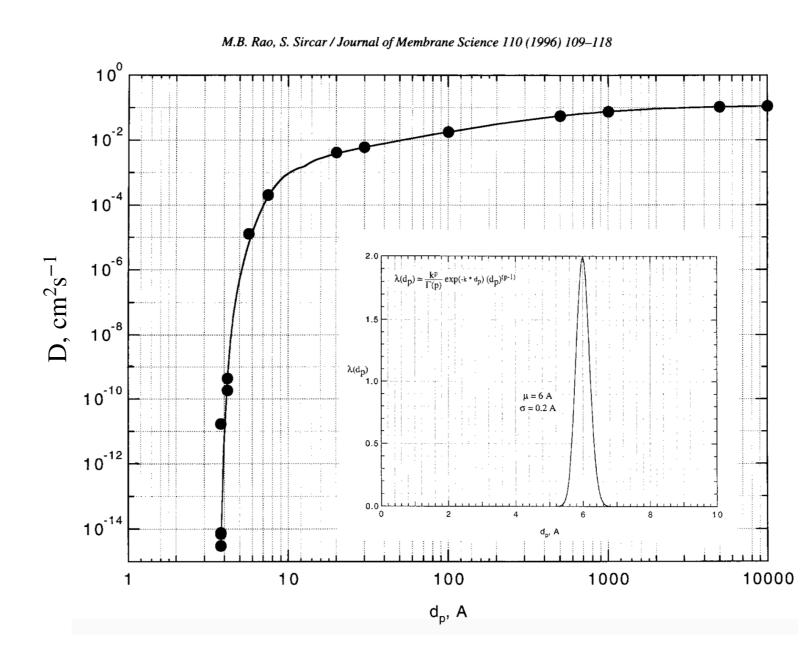
NANOFLUIDICS Artificial mechanosensitive conductance

Diffusion in nanoporous materials



Diffusion in nanoporous materials



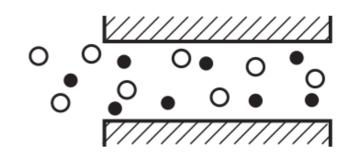


Adapted from

J. Karger, D. M. Ruthven, D. N. Theodorou, Diffusion in Nanoporous Materials

Viscous diffusion

Viscous flow in cylindrical tubes (when there is a pressure difference between the two ends)



Hagen-Poiseuille equation:

$$v_1 = \frac{d^2 \Delta P_1}{32\eta_1 l} \qquad N_1 = c_1 v_1 = c_1 \frac{d^2 \Delta P_1}{32\eta_1 l} = \left(\frac{d^2 c_1 RT}{32\eta_1}\right) \frac{\Delta c_1}{l}$$

If we have no convection, and only diffusion

$$N_1 = J_1 = D_{vis} \frac{\Delta c_1}{l}$$
 $\Rightarrow D_{vis} = \frac{d^2 c_1 RT}{32\eta_1} = \frac{d^2}{32\eta_1} P_1$

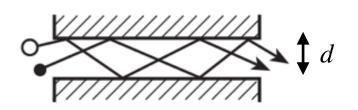
Viscous diffusion increases at higher P

Note: This is an approximate treatment; viscous flow is bulk flow (convection can be important)

Knudsen diffusion

Occurs when mean free path, l, is larger than d (pore diameter)

Knudsen number =
$$Kn = \frac{l}{d} > 1$$



- For liquids, mean free path is of the order of angstroms, therefore Knudsen transport is not important.
- **■** For gases, mean free path ~ 10-200 nm

Diffusion coefficient derived from the kinetic theory of gases but by replacing l by d

$$D = \frac{1}{3}\bar{v}l \quad \Rightarrow \qquad D_K = \frac{1}{3}\bar{v}d$$

$$\bar{v} = \sqrt{\frac{8k_BT}{\pi m}}$$

$$D_K = \sqrt{\frac{8k_B Td^2}{9\pi m}}$$

Unlike in viscous flow, the Knudsen diffusion is independent of pressure

Molecular diffusion in pores

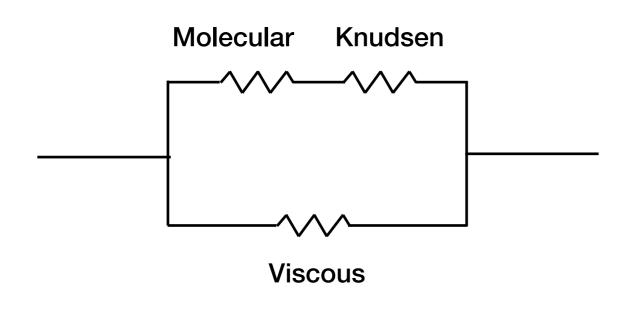
Becomes important when more than 1 species is diffusing through the pore

When the pore is too large, the effect of molecular-wall collision becomes negligible and molecular diffusion becomes important

$$D_{AB} = \frac{1.86 * 10^{-3} * T^{1.5} * (1/M_1 + 1/M_2)^{0.5}}{P\sigma_{12}^2 \Omega}$$

$$\frac{1}{D} = \frac{1}{D_{\rm K}} + \frac{1}{D_{\rm AB}}$$

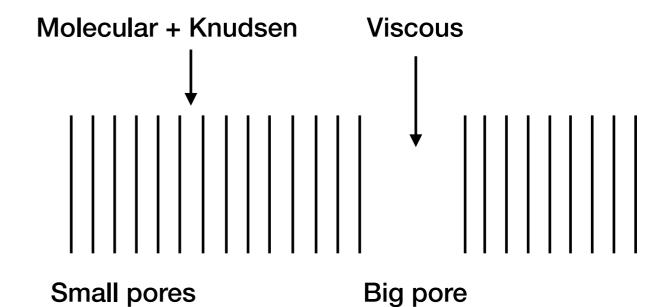
Overall diffusion in pores



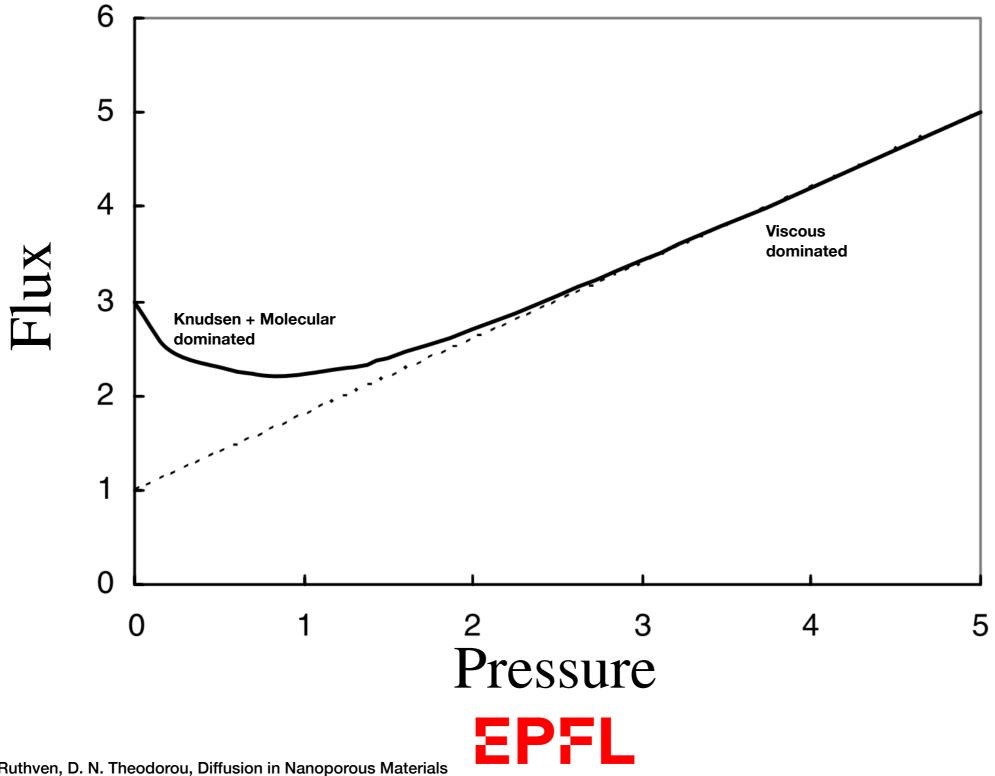
$$D_{total} = D_{vis} + D$$

Diffusivity = 1/Resistance

$$\frac{1}{D} = \frac{1}{D_K} + \frac{1}{D_{AB}}$$



Combination of viscous, Knudsen and molecular diffusion



Relative importance of viscous, Knudsen and molecular diffusion in gaseous diffusion

$$\frac{1}{D} = \frac{1}{D_{\rm K}} + \frac{1}{D_{\rm AB}} \qquad D_{total} = D_{vis} + D$$

$$\frac{D_{\rm AB}}{p \text{ (atm)}} \quad {}^{\rm r} \quad {}^{\rm D}_{\rm K} \quad {}^{\rm D}_{\rm Cm^2 \, s^{-1}}) \quad {}^{\rm D}_{\rm total} \quad {}^{\rm D}_{\rm total}$$

$$1.0 \quad 0.2 \quad 10^{-5} \quad 0.3 \quad 0.007 \quad 0.07 \quad 0.$$

$$D_{AB} = \frac{1.86 * 10^{-3} * T^{1.5} * (1/M_1 + 1/M_2)^{0.5}}{P\sigma_{12}^2 \Omega}$$

$$D_K = \sqrt{\frac{8k_B Td^2}{9\pi m}}$$

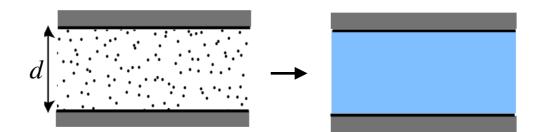
$$D_{vis} = \frac{d^2}{32\eta_1} P_1$$

Capillary condensation

Consider two parallel solid surfaces separated by a distance d, which is in contact with vapor reservoir with pressure P_{ν} at temperature T

If d is too large, the liquid-vapor equilibrium will occur at

$$P_v = P_{sat}$$

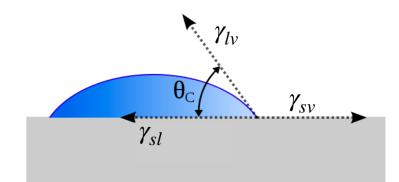


If the surface tension of the dry solid surface is higher than the wet solid surface

$$\gamma_{sv} > \gamma_{sl}$$

then the solid will favor liquid condensation

Young–Dupré equation of partial wetting: $\gamma_{lv}\cos\theta = \gamma_{sv} - \gamma_{sl}$ $0 < \theta < 90$



Therefore, the solid can successfully stabilize a liquid phase even when

$$P_{v} < P_{sat}$$
 (flat interface)

Capillary condensation

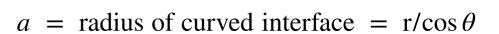
Kelvin equation: the vapor-pressure in curved interface changes from flat interface

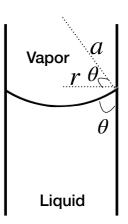
$$P_{sat,curved} = P_{sat,flat} \exp\left(-\frac{2V_l \gamma_{lv}}{(r/\cos\theta)RT}\right)$$

 θ = contact angle

 V_l = liquid molar volume

r = radius of tube





- Diffusion in the capillary condensation regime is complicated to follow.
- As soon as a pore fills with condensate, the vapor flux through that pore is cut off and transport then depends on liquid flow driven by capillary forces.
- As a result, the apparent diffusivity is greatly reduced.

Measurement of diffusion coefficients

How would you measure diffusion coefficient for your material, system, etc?

Motivation:

- 1) Sometime we want to measure the diffusion coefficient in film (sensor, membranes, evaporation, catalyst, ion-exchange membrane in fuel cell, batteries, skin grafts, etc.)
- 2) Sometime, we want to measure the diffusion coefficient in nanoporous materials in powder form (catalyst, adsorbents, etc.; e.g. zeolites, MOFs, activated carbon, carbon nanotube, etc.)

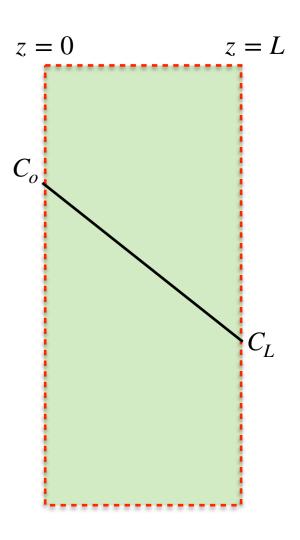
Diffusion across a thin porous film

$$C = C_0 + (C_L - C_0) \frac{z}{L}$$

$$J = -D\frac{dC}{dz} = D\frac{(C_0 - C_L)}{L} = constant$$

Fix the concentrations on both sides.

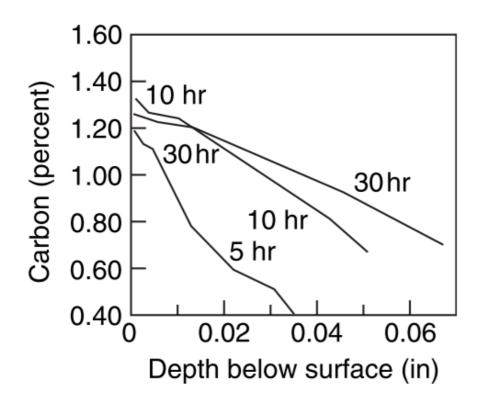
Measure the flux.

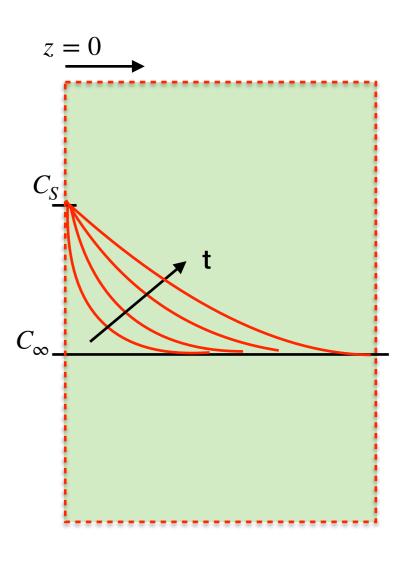


Transient diffusion across a semi-infinite slab

$$\frac{C - C_S}{C_\infty - C_S} = erf \zeta = \frac{2}{\sqrt{\pi}} \int_0^{\zeta} \exp(-s^2) ds$$

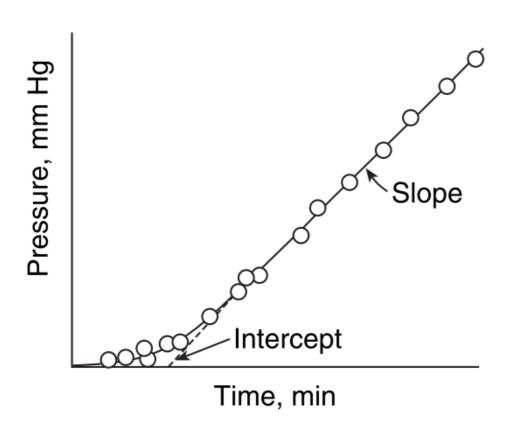
$$\zeta = \frac{z}{\sqrt{4Dt}}$$

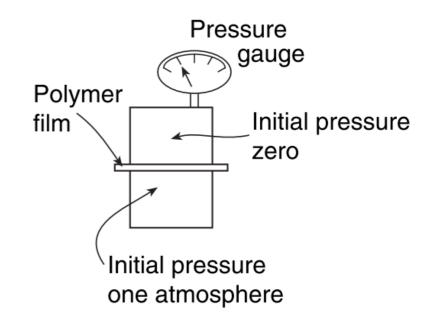




Diffusion across a dense polymeric film

Fix the concentrations on both sides. Measure the flux.





$$p = \left\{ \frac{ARTp_0}{Vl} \right\} (HD) \left[t - \frac{l^2}{6D} \right]$$

Diaphragm-cell to measure diffusion coefficient

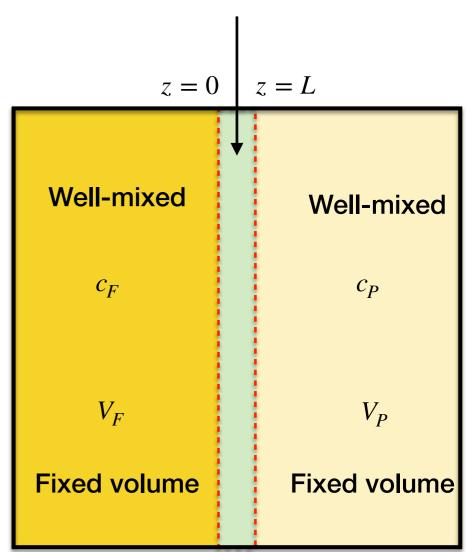
Cross - sectional area = A

Porous diaphragm

$$D = \frac{1}{\beta t} \ln \left(\frac{c_{F0} - c_{P0}}{c_F - c_P} \right)$$

$$\beta = \frac{AH}{L} \left(\frac{1}{V_F} + \frac{1}{V_P} \right)$$

Measure the initial concentration in both sides. Measure the final concentration in both sides.



Diaphragm-cell with large well-mixed reservoirs

(quasi steady-state)

Cross - sectional area = A

Porous

Define your system - Diaphragm and reservoirs

2 boundary and 2 initial conditions:

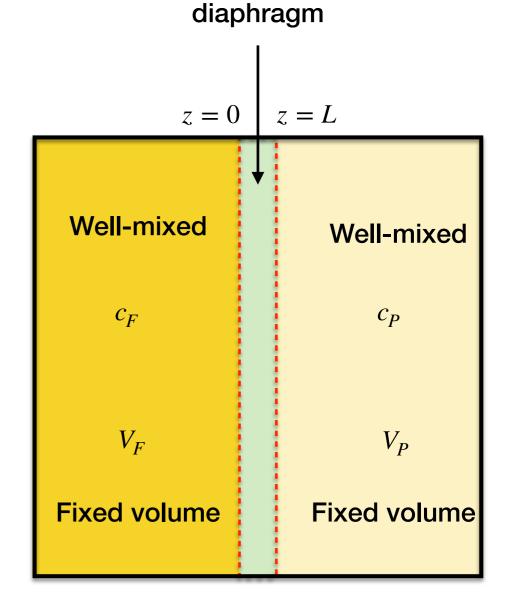
$$t = 0$$
 $c = c_{F0}$ in left reservoir $t > 0$ $c = c_F$ at $z = 0$ $c = c_{P0}$ in right reservoir $c = c_P$ at $z = L$

Quasi steady-state assumption

- Mass stored in reservoir is >> mass in diaphragm
- Change in concentration in reservoir is extremely slow
- Diaphragm is at quasi steady-state

$$J_{z=0} = J_{z=L} = -D\frac{dc}{dz} = DH\frac{(c_F - c_P)}{L}$$

where c_F and c_P are functions of time



Diaphragm-cell with large well-mixed reservoirs (quasi steady-state)

Reservoirs

 $Accumulation*dV = F\overset{o}{lux}\mid_{in}*dA - F\overset{o}{lux}\mid_{out}*dA + Generation*dV - Consumption*dV$

Left reservoir

$$V_F \frac{dc_F}{dt} = 0 - AJ \mid_{z=0} + 0 - 0$$

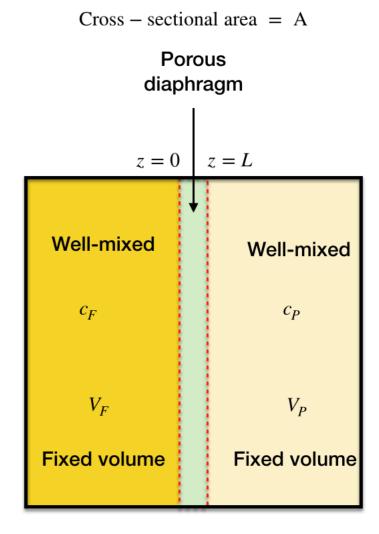
$$V_F \frac{dc_F}{dt} = -AJ \mid_{z=0} = -AHD \frac{(c_F - c_P)}{L} \qquad \Rightarrow J_{z=0} = DH \frac{(c_F - c_P)}{L}$$

$$\Rightarrow J_{z=0} = DH \frac{(c_F - c_P)}{L}$$

Right reservoir

$$V_P \frac{dc_P}{dt} = AJ \mid_{z=L} -0 + 0 - 0$$

$$V_P \frac{dc_P}{dt} = AJ|_{z=L} = AHD \frac{(c_F - c_P)}{L}$$



Case of a diaphragm-cell

$$V_F \frac{dc_F}{dt} = -AHD \frac{(c_F - c_P)}{L}$$

$$V_P \frac{dc_P}{dt} = AHD \frac{(c_F - c_P)}{L}$$

$$\Rightarrow \frac{dc_F}{dt} = -\frac{AHD}{L} \frac{(c_F - c_P)}{V_F}$$

$$\Rightarrow \frac{dc_P}{dt} = \frac{AHD}{L} \frac{(c_F - c_P)}{V_P}$$

Overall we have two coupled partial differential equations, 2 boundary and 2 initial conditions

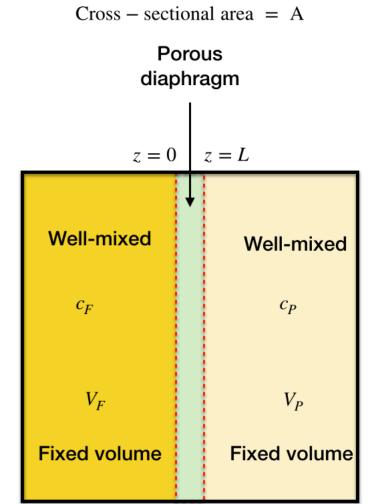
The equations look similar. We can reduce them to a single partial differential equation by subtraction from each other.

Subtracting right from left

$$\frac{d}{dt}(c_F - c_P) = -\frac{AH}{L} \left(\frac{1}{V_F} + \frac{1}{V_P}\right) D(c_F - c_P)$$

$$\frac{d}{dt}(c_F - c_P) = -\beta D(c_F - c_P)$$

$$\beta = \frac{AH}{L} \left(\frac{1}{V_F} + \frac{1}{V_P} \right)$$



Case of a diaphragm-cell

$$\frac{d}{dt}(c_F - c_P) = -\beta D(c_F - c_P)$$

$$\beta = \frac{AH}{L} \left(\frac{1}{V_F} + \frac{1}{V_P} \right)$$

Solution

$$\ln(c_F - c_P) = -\beta Dt + constant$$

Two initial conditions can be rearranged as one:

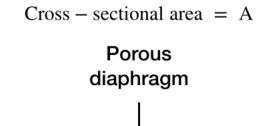
$$t = 0$$
 $c = c_{F0}$ in left reservoir $c = c_{P0}$ in right reservoir

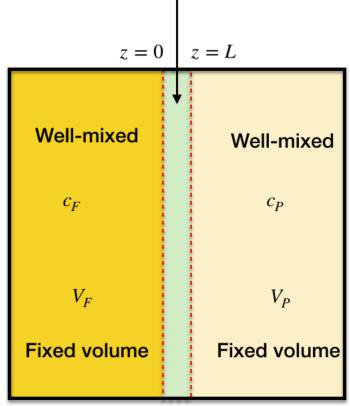
$$(c_F - c_P)|_{t=0} = (c_{F0} - c_{P0})$$

After applying initial condition

$$\frac{c_F - c_P}{c_{F0} - c_{P0}} = \exp(-\beta Dt)$$

$$D = \frac{1}{\beta t} \ln \left(\frac{c_{F0} - c_{P0}}{c_F - c_P} \right)$$





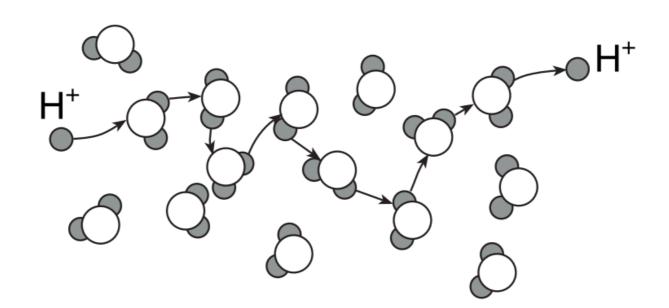
Diffusion for strong electrolytes

Table 6.1-1 Diffusion coefficients of ions in water at $25\,^{\circ}C$

Cation	D	Anion	D
$\overline{H^+}$	9.31	OH^-	5.28
Li ⁺	1.03	F^-	1.47
Na ⁺	1.33	Cl^-	2.03
K^+	1.96	Br^-	2.08
Rb^+	2.07	I^-	2.05
Cs^+	2.06	NO_3^-	1.90
Ag^+	1.65	CH_3COO^-	1.09
NH_4^+	1.96	$CH_3CH_2COO^-$	0.95
$N(\vec{C_4}H_9)_4^+$	0.52	$B(C_6H_5)_4^-$	0.53
Ca^{2+}	0.79	SO_4^{2-}	1.06
Mg^{2+}	0.71	CO_3^{2-}	0.92
H' Li ⁺ Na ⁺ K ⁺ Rb ⁺ Cs ⁺ Ag ⁺ NH ₄ N(C ₄ H ₉) ₄ Ca ²⁺ Mg ²⁺ La ³⁺	0.62	$SO_4^{2^-}$ $CO_3^{2^-}$ $Fe(CN)_6^{3^-}$	0.98

Note: Values at infinite dilution in 10^{-5} cm²/sec. Calculated from data of Robinson and Stokes (1960).

Special case for diffusion of protons



Grotthus mechanism

Coupled diffusion of ions in dilute solution

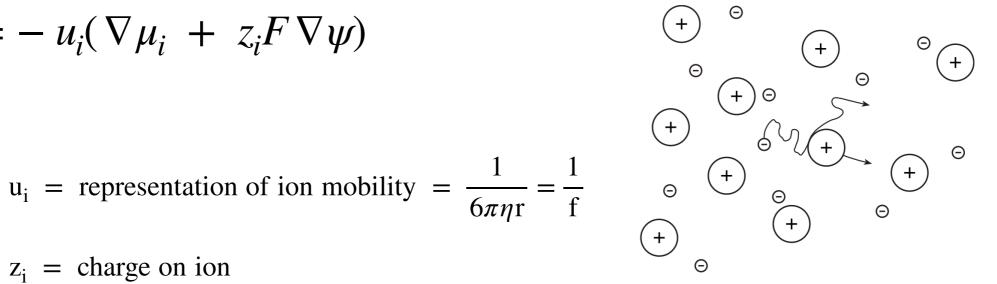
$$\begin{pmatrix} ion \\ velocity \end{pmatrix} = \begin{pmatrix} ion \\ mobility \end{pmatrix} \begin{pmatrix} chemical \\ forces \end{pmatrix} + \begin{pmatrix} electrical \\ forces \end{pmatrix}$$

$$v_i = -u_i(\nabla \mu_i + z_i F \nabla \psi)$$

 z_i = charge on ion

 $F = Faraday constant = eN_A$

 $\nabla \psi$ = electrostatic potential gradient



Coupled diffusion of ions in dilute solution

$$v_i = -u_i(\nabla \mu_i + z_i F \nabla \psi)$$

$$\Rightarrow v_i = -u_i \left(\frac{RT}{c_i} \nabla c_i + z_i F \nabla \psi \right)$$

$$\mu_i = \mu_{i,0} + RT \ln \frac{P_i}{P}$$

$$\mu_i = \mu_{i,0} + RT \ln \frac{c_i}{c}$$

$$\mu_{i} = \mu_{i,0} + RT \ln \frac{P_{i}}{P}$$

$$\mu_{i} = \mu_{i,0} + RT \ln \frac{c_{i}}{c}$$

$$\nabla \mu_{i} = RT \nabla \ln c_{i} = \frac{RT}{c_{i}} \nabla c_{i}$$

$$\Rightarrow c_i v_i = -u_i RT \left(\nabla c_i + z_i c_i \frac{F \nabla \psi}{RT} \right)$$

$$\Rightarrow J_i = -u_i RT \left(\nabla c_i + z_i c_i \frac{F \nabla \psi}{RT} \right)$$

$$N_i = c_i v_i$$

In the absence of convective flux (dilute solution)

$$J_i = N_i = c_i v_i$$

Coupled diffusion of ions in dilute solution

$$\Rightarrow J_i = -u_i RT \left(\nabla c_i + z_i c_i \frac{F \nabla \psi}{RT} \right)$$

$$\Rightarrow J_i = -D_i \left(\nabla c_i + z_i c_i \frac{F \nabla \psi}{RT} \right)$$

Nernst-Plank Equation

$$u_i = \text{ion mobility} = \frac{1}{6\pi\eta r} = \frac{1}{f}$$

$$u_i RT = \frac{RT}{6\pi\eta r} = \frac{RT}{f} = D_i$$

Exercise problem 1

Helium/Argon mixture is diffusing through a 100 nm pore at 1 bar and 25 °C. Report D_{molecular}, D_K and D_{vis} for helium at 1 bar and 10 bar. Calculate D_{total} at 1 and 10 bar pressures.

$$D_{He,Ar} = 0.7 \text{ cm}^2 \text{s}^{-1} \text{ at } 1 \text{ bar}$$

$$D_K = \sqrt{\frac{8k_B Td^2}{9\pi m}}$$

$$D_{vis} = \frac{d^2}{32\eta_1} P_1$$

$$\eta_{\rm He} = 2 * 10^{-5} \text{ Pa s}$$

Exercise problem 2: Capillary condensation

Water at 25 °C and 1 bar has a vapor pressure of 23.8 torr. Calculate the equilibrium vapor pressure in a capillary with diameter of 2 nm.

```
\gamma_{lv} = surface tension = 0.072 N/m

\theta = contact angle = 30 degree

V_l = molar volume = 0.018/1000 m<sup>3</sup>/mole
```


Exercise problem 3

An electrochemical cell is composed of an ion-selective membrane which separates two well-mixed compartments filled with electrolytes. You are working as a process engineer, and need to screen a newly launch membrane. To do this you decide to place the membrane in cell such that:

$$t = 0, c_{F0} = 1 \text{ M}$$

 $c_{P0} = 0 \text{ M}$

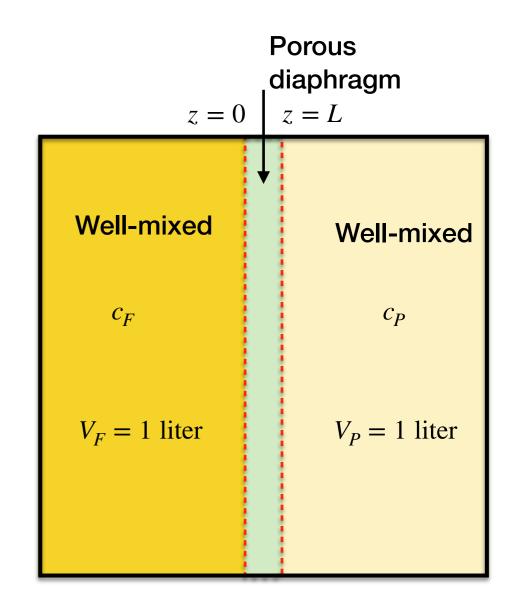
Calculate the diffusion coefficient for a membrane if

$$@t = 1 \text{ hr}, (c_F - c_P) = 0.5 \text{ M}$$

Compare above with the diffusion coefficient for another membrane when

$$t = 1 \text{ hr}, (c_F - c_P) = 0.25 \text{ M}$$

$$D = \frac{1}{\beta t} \ln \left(\frac{c_{F0} - c_{P0}}{c_F - c_P} \right) \qquad \beta = \frac{AH}{L} \left(\frac{1}{V_F} + \frac{1}{V_P} \right)$$



$$A = 1 m^2 \qquad L = 100 \ \mu m$$

$$H = 0.1 \frac{M}{M}$$

